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Abstract- A bus system that can change dynamically to suit computational needs

is referred to as reconfigurable. We present a fast adaptive convex hull algo-

rithm on a 2-dimensional processor array with a reconfigurable bus system

(2-d PARBS, for short). Specifically, we show that computing the convex hull

of a planer set of n points taken O(logn/logm) time on a 2-d PARBS of size

mn x n with 3 <: m < n. Our result implies that the convex hull of n points in

the plane can e computed in O(1) time in a 2-d PARBS of size n 1"5 x n.

1 Introduction

Recent advances in VLSI have made it possible to build massively parallel machines featur-

ing many thousands of cooperating processors. This increase in computational power does

not, however, translate into increased performance of the same order of magnitude. One

of the reasons seems to be that interprocessor communications and simultaneous memory

accesses often act as bottlenecks in parallel machines.

To alleviate the inefficiency of long distance communication among processors, bus

systems have been recently added to a number of parallel machines [2-4,5,6,11]. If such a

bus system can be dynamically changed, under program control, to suit communication

needs among processors, it is referred to as reconfigurable. Examples include the bus

automaton [11], the reconfigurable mesh, and the polymorphic torus [2,3], among others.

The computational model used throughout this work is the reconfigurable mesh [5].

An rn x n reconfigurable mesh (also called a PARBS [13]) consists of m x n identical

processors positioned on a rectangular array (refer to Figure 1). The processor at (i,j),

(1 < i <_ m; 1 < j < n) is identified by P(i,j). Every processor has 4 ports denoted by N,

S, E, and W. There are also implicit north, south, east, and west directions (refer to Figure

1). In each processor, ports can be dynamically connected in pairs to suit computational

needs. In the absence of these local connections, the PARBS is functionally equivalent to

the mesh connected computer.

1This work was supported by NASA under grant NCC1-99 by the National Science Foundation under
grant CCR-8909996 is gratefully acknowledged
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Figure 1: A 4x5 PARBS - . . • . .

We assume that each processor has a small number of registers of size O(log n) bits and

that a processor can perform in unit time standard arithmetic and boolean operations. We

assume a single instruction stream: in each time unit the same instruction is broadcast

to all processors, which execute it and wait for the next instruction. Each instruction

can consist of setting local connections (as explained later) , performing an arithmetic or
boolean operation, broadcasting a value on a bus, or receiving a value from a specified

bus. The regular structure of the PARBS makes it suitable for VLSI implementation. In

fact, it has been argued [5] that the PARBS can be used as a universal chip capable of

simulating any equivalent-area architecture without loss of time.

By adjusting the local connections within each processor several subbuses can be es-

tablished. We assume that the setting of local connection is destructive in the sense that

setting a new pattern of connections destroys the previous one. At any given time, only

one processor can broadcast a value onto a bus. Processors, if instructed to do so, read

the bus. If no value is being transmitted on the bus, the read operation has no result.

It is assumed [5,6] that communications along buses take O(1) t_me. This seems to be a

reasonable assumption in the light of recent experiments with the YUPPIE system [4].

A number of problems have been solved in O(1) time on PARBS. Very recently, Wang

et al [13] have proposed O(1) algorithms for the transitive closure and some related graph

problems; Olariu, Schwing, and Zhang [9] have proposed an adaptive sorting algorithm;

O(. _°-_) time on a 2-dspecifically, they show that sorting a sequence of n reals takes lo ,_
zog m

PARBS of size nm x n with 3 < m < n. In particular, their result implies a constant-time

sorting algorithm on an n 1"5 × n 2-d PARBS.

The convex hull of a set of points in the plane is defined as the smallest area convex

set that contains the original set. The problem of computing the convex hull of points

in the plane is central in a variety of problems in pattern recognition, computer graphics,

statistics, and image processing [1,7,8,10].
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To the best of our knowledge, no convex hull algorithm has been reported in the lit-

erature on a 2-d PARBS. The purpose of this paper is to propose a fast adaptive convex

hull algorithm for a set of n points in the plane. We reduce the problem of computing

the convex hull of a set of planar points to the problems of sorting and computing the

prefix maximum of n real numbers. To begin, we show that the problem of computing the

maximum of n real numbers can be solved in time fit" l*-g-_-_V_logmj on a 2-d PARBS of size m x n
with 2 < m < n. We also use the fast adaptive sorting algorithm of [9]. What results is a

fast adaptive algorithm that computes the convex hull of a set of n points in the plane in

Of l°-z_ time on a 2-d PARBS of size nm × n with 3 < m < n. In particular, for m=n °'5
_.log rn / -- --

we obtain an O(1) time convex hull algorithm on a 2-d PARBS of size n i"s x n.

2 The stepping stones

Our convex hull algorithm relies on a number of intermediate results that we present next.

To begin, we consider the problem of computing the prefix maximum of n reals on a n × n

PARBS. Specifically, given n real numbers al, a2,..., a, with processor P(1,j) storing

aj, the problem is to compute maxx<_<j{al} for all 1 < j < n. Our algorithm involves

establishing a number of subbuses and broadcasting values along them. The details of our

algorithm are spelled out by the following sequence of steps.

Algorithm Prefix-Maximum;

Step 1. every processor P(i,j) (2 < i < n- 1;1 _< j < n) connects its ports N and S';

Step 2. every processor P(1,j) (1 < j < n) broadcasts aj southbound along the vertical

subbus in column j;

Step 3. every processor P(i,j) (2 < i < n - 1;2 < j < i) connects its ports W and E;

Step 4. every processor P(j,j) (2 _< j < n) broadcasts aj westbound along the horizontal

subbus in row j;

Step 5. every processor P(j,i) (2 < j < n- 1;! _< i < j) compares al and aj;

if ai > aj then

P(j, i) disconnects the horizontal subbus;

marks itself;

Step 6. every marked processor P(i,j) broadcasts a "0" along the horizontal subbus

eastbound;

Step 7. every processor P(j,j) (1 < j < n) stores in its own memory a "0" or a "1"

depending on whether or not it has received a "0" in Step 6;

Step 8. every processor P(i,j) (2 < i < j < n) connects its ports N and S;
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Step 9. every processor P(j,j) (2 < j _< n) broadcasts on the vertical subbus northbound

the value it has stored in Step 7;

Step 10. every processor P(1,j) (2 _< j < n) that has received a "0" in Step 9 Connects

its ports W and E; .............

Step 11. every processor P(1,j) (1 _< j < n) that stores a "1" broadcasts aj eastbound

along the horizontal subbus in row 1;

Theorem 1. Algorithm Prefix-Maximum correctly computes the prefix rn_mum of n

real numbers inO(1 ) time on an n x n PARBS,

Proof. To begin, note that in Step 5, every processor P(i,j)(2 < i < n - 1;1 _< j <: i)

knows al and aj. Further, it is easy to see that at the end of Step 7 processor P(j,j)

(1 _< j < n) stores a "1" if, and only if, aj is as least as large as al with i < j.

Consequently, every processor P(1,j) in row 1 that at the end of Step 9 stores a "0"

knows that aj cannot be the prefix maximum of al for i < j. In fact the prefix maximum

of the first j real numbers ai, as,...,aj is stored by the first processor to the left of P(1,j)
that stores a "1", The conclusion follows. []

Next, we show how to compute the maximum of n real numbers az, as,...,an on an

m x n PARBS with 2 < m _< n. Again, we assume that the numbers are stored one per

processor such that for all j (1 _< j < n), P(1,j) stores aj. The idea of our algorithm is to

partition the original m x n PARBS into subPARBS of size m x m. To avoid tedious but

inconsequential housekeeping details we assume that n is a power of rn.

We partition the n columns into contiguous groups of rn columns each and let the k-th

subPARBS, M_, (0 < k < n/m - 1) consist of the columns km+ 1, km+ 2,...,km + m.

As a preprocesslng step, for all j (2 < j < n) we move the data contained in P(1,j) to the

"diagonal" processor of its rn x m sUbPARBS, P((j - 1) mod m + 1,j). The main loop of

this algorithm applies the (prefix) maximum algorithm described above to specified m x rn

subPARBS. This process proceeds iteratively, determining the maxima of groups of size

m, m s, m z, and so on. Clearly, in logm n -t°-_ iteration we have computed the maximum
-- log m

of the n numbers.

We omit the detaiis 0f:bus-conStruction Steps which are similar to those in the previous

algorithm. The reader can easily fill in the details.

Algorithm Maximum;

Step 1. {preprocessing}

for all j (1 < j < n) in parallel

establish a vertical subbus from P(1,j) to P((5 - 1)rood rn + 1,j);

P(1,j) broadcasts aj on this subbus to P((j - 1) rood rn t- 1,j);

P((j - 1) mod m + 1, j) marks itself

endfor;

2±
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Step 2. {main loop}
for k +---1 to _ do

log m

for all j (1 < j < _-_) in parallel

all processors connect ports W and E;

processors P(i, (j - 1)mk+ 1) spnt the horizontal subbus in row i;

all marked processors broadcast the value they hold

along the horizontal subbus westbound;

all marked processors unmark themselves;

Mu_l)mk-_ computes the maximum of the values

in column (j - 1)m I' + 1;

let the result be stored in P((j - 1) mod m + 1, (j - 1)rn k + 1);

all processors P((j - 1) mod m + 1,(j - 1)m k + 1) mark themselves
endfor

endfor;

Theorem 2. Algorithm Maximum correctly computes the maximum of n real numbers

in V_logmjc_I°-_ time on an m x n PARBS with 2 _< m _< n.

Proof. The correctness is implied by the following result: at the end of the t-th iteration

(0 < t < lo___ for all j (1 < j < m_), processor P((j-1) modm+l (j-1)m'+l)-- n log rn/' -- --

contains the maximum in columns (j - 1)m t + 1 through jm t.

The proof of the above statement is by induction on t. The basis is easy: at the end of

the 0-th iteration the conclusion is guaranteed by the preprocessing step.

Assume the above statement satisfied at the end of the t-th iteration. We only need

show that it also holds at the end of the (t+l)-st iteration. For this purpose, it is instructive

to follows the (t + 1)-st iteration: here, after all processors connect their ports W and E

thus establishing horizontal subbuses in each row, the processors P(i, (j - 1)m t+l + 1) split

the horizontal subbus in row i; next, all marked processors broadcast the value they hold

along the horizontal subbus westbound. By the induction hypothesis, these are processors

P((j - 1) mod m + 1,(j - 1)m + 1). Therefore, when the subPARBS Mej_l m,+,compute
the maximum of the values in column (j - 1)m k+l + 1, the induction hypothesis guarantees

that the resulting value is the maximum in columns (j - 1)m t+l + 1 through jrn _+1, a total

of m t+l columns.

To argue for the running time, note that by Theorem 1, the inner for loop runs in 0(1)
time. The conclusion follows. []

3 The Algorithm

We are now in a position to present our planar convex hull algorithm. Let S={pl, p2,...,pn}

be a planar set of points; for 1 < i < n, pl is represented by its Cartesian coordinates (zl, yl).

To avoid tedious details we assume, without loss of generality, that the points in S are in

general position, with no three collinear and no two having the same x or y coordinate.

The output of the convex hull algorithm is a linked list CH that contains all the points



13,2.6

on the convex hull starting with the one with the largest _ coordinate and proceeding

counterclockwise. Our algorithm consists of the following sequence of steps.

Algorithm Convex-Hull;

Step 1. find the four extremal points in 5', and let them be, without loss of generality, pl,

P2, P3, and P4. Specifically, zl=maxl</<n{_i},.... y==maxl<i<_{yi}, x3=minl<j<,,{xj___ _},

and y4 =minl<j_<.{yj}.

Step 2. compute the sets

sl = {pil_2 < _i < _1; yl < yi < y_},
S2 = {p_l_3< _ _<_;v3 _<y, < y_},
S3 = {p_l_3_<zl _ _,; y, _<v_ - y3},
s, = {p_l=,,< _ < _,;y, < y_ < yl}.

Note: For simplicity, we de_ With SI only, the others being perfectly similar.

Step 3. sort the points in Sx by increasing y coordinate, and let Ll=(pl=qx, q2,...,qt=p2)

be the resulting sorted sequence;

Step 4. for allj (1 <j<t) inparallel ......

find the subscript dj (j < dj _< t) such that the angle determined by qd_,

qj, and the negative direction of the z axis is as large as possible;

Step 5. compute the prcfix maximum of the values dj in L1, and set re(j) +- max,<,<j_l{d,};

Step 6. GH1 _ L1; "

for all j (2 < j < t - 1) in parallel

remove qj from CH1 whenever dj _< re(j);

Before giving the proof of correctness of our algorithm, we need to take note of the

following simple observation. The sorted sequence L1 of points obtained at the end of Step

3 can be viewed as determining a polygonal i_ne (termed a chain in [10]) joining pi and Pi;

It is easy to see that the convex hull CH of the set S of points is exactly the Convex hull

o_ the simple polygon P obtained by concatenating the polygonal lines L_, Z2,ZZ, and L4,

in this order.

The following result argues for the correctness of our algorithm.

Theorem 3. At the end of Step 6, CH1 contains the portion of the convex hull contained

in Sx.

Proof. By the previous observation we only need show that the linked list CH1 obtained

at the end of step 6 contains the restriction of the convex hull of P bctween Pl and p_.

This follows from the following claim

a point qj (2 < j < t - 1) of L_ belongs to CH if, and only if, dj > re(j).
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First, let qj(2 < j < t - 1) in L1 belongs to the convex hull and let ql and q_ (i < j < k)

be its immediate neighbors on the convex hull. (We note that since ql and qt trivially

belong to the convex hull, the points ql and qk are well defined.) Clearly, d_=j and so

re(j) = j < dj = k, as claimed.

Conversely, if some point qj in L1 does not belong to the convex hull then let qi and qk

(i < k) be the closest points on the convex hull, with qj lying on the chain from qi to q_.

Since q_ and qk are neighbors on the convex hull, we have d_=k; furthermore, dj _< k = rn(j),

and the conclusion follows. []

Next, we propose to show how Steps 1-6 above can be efficiently implemented on a

2-d PARBS. More precisely, we assume a 2-d PARBS of size nrn x n with 3 < m _<

n. Some of the Steps 1-6 in our algorithms need the whole PARBS while others can

run on a subPARBS, as specified; the data movement necessary to conform to the input

requirements of a specific step are ignored here; the reader can easily work out all the

details.

Step 1 can be implemented to run in O(1) time on an n x n subPARBS since we only

need compute mazcl_<j_<,{zj} and minl<_3_-<n{zj_} with z = z and z : y.

Step 2 is demonstrated for $1 only; computing Si with i : 2, 3,4 is similar. All that

is needed is to establish a subbus running through the whole of row 1. The processors

storing Pl and P2 broadcast, in two computational steps, their Cartesian coordinates to all

processors in row 1; every processor that stores a point in S, marks itself. Thus Step 2

runs in O(1) time.

Step 3 can be implemented as follows. First, all unmarked processors change the y

coordinate of the point that they store to 4-00. Now the sorting algorithm in [9] is invoked:

this runs in O(. l°--_) and uses the whole PARBS. Note that at the end of Step 3, processors
log m

P(1,1), P(1,2),...,P(1,t) contain L in sorted order.

Step 4 can be implemented to run in O(1) time on an mn x n subPARBS as follows.

Recall from Step 3 that, initially, for all 1 < j <_ t P(1,j) stores qj. For further reference,
this subPARBS is further subdivided into subPARBS of size m × n as follows. The first

rn × n subPARBS involves the first m rows, the second the next m rows and so on.

We establish vertical subbuses in each column and let P(1,j) broadcast the Cartesian

coordinates of qj along the subbus in column j (1 _< j _< t). Next, establish horizontal

subbuses running from P(m(j-1)+l,j) to P(m(j-1)4-1,t) (1 _< j < t). Note that these

are precisely the first rows of our m x n subPARBS. For all j, P(m(j - 1) + 1, j) broadcasts

the Cartesian coordinates of qj eastbound on the horizontal subbus in row m(j - 1) 4- 1.

Every processor P(m(j - 1) 4- 1, k) with j < k < t computes the angle specified in Step 4.

Actually, computing the angle itself is not necessary, the tangent of the angle can be readily

computing using two subtractions and a division. Now the maximum of all values in the

first rows of these subPARBS can be computed in O( l°-z_ time using Algorithm Maximum
log rn 1

developed in Section 2. It is easy to arrange for the maximum in row m(j - 1) + 1 to be

sent back to P(1,j). This, clearly takes O(1) time since only the appropriate subbuses

have to be established and the information broadcast along them.

Step 5 can be implemented to run on an n × n subPARBS by using Algorithm Prefix-

Maximum discussed in Section 2.
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Step 6 involves marking every P(1,j) that contains a point of the convex hull. After

this is done, a horizontal subbus is established in row 1. Every marked processor splits

this bus and broadcasts its identity westbound on its own subbus. This, in fact creates

the list CH1 as desired. Clearly, the running time of this step is 0(1).

To summarize our discussion we state the following result.

Theorem 4. The convex hull of a planar set of n points can be computed on an PARBS

of size nm × n with 3 < m < n in Of I°8'_ time. o
-- -- _,log m ]

In particular, if m = n °'_ then we have the following result.

Corollary 4.1, The convex hull of a planar set of n points can be computed in O(1) time
on an PARBS of size n l"s × n. D

4 Conclusion

A bus system that can be dynamically altered to suit communicational needs among co-

operating processors is referred to as reconfigurabIe. In this paper we a fast adaptive

algorithm to solve the planar convex hull problem.

Specifically, we showed that computing the convex hull of a set of n points in the plane
takes O ( l°-s--_-_lo_,-,, J on a 2-d PARBS of size nm× n with 3 _< m _< n. In particular, our result

implies that the same problem can be solved in O(1) time on a 2-d PARBS of size n 1"s x n.
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